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Both genetic and environmental factors contribute to neurodegenerative disorders. In a large number of neuro-
degenerative diseases (for example, Alzheimer's disease (AD)), patients do not carry themutant genes. Other risk
factors, for example the environmental factors, should be evaluated. 17β-trenbolone is a kind of environmental
hormone aswell as an anabolic–androgenic steroid. 17β-trenbolone is used as a growth promoter for livestock in
the USA. Also, a large portion of recreational exercisers inject 17β-trenbolone in large doses and for very long
time to increase muscle and strength. 17β-trenbolone is stable in the environment after being excreted. In the
present study, 17β-trenbolone was administered to adult and pregnant rats and the primary hippocampal
neurons. 17β-trenbolone's distribution and its effects on serum hormone levels and Aβ42 accumulation in vivo
and its effects on AD related parameters in vitro were assessed. 17β-trenbolone accumulated in adult rat brain,
especially in the hippocampus, and in the fetus brain. It altered Aβ42 accumulation. 17β-trenbolone induced
apoptosis of primary hippocampal neurons in vitro and resisted neuroprotective function of testosterone.
Presenilin-1 protein expression was down-regulated while β-amyloid peptide 42 (Aβ42) production and
caspase-3 activities were increased. Both androgen and estrogen receptors mediated the processes. 17β-
trenbolone played critical roles in neurodegeneration. Exercisers who inject large doses of trenbolone and
common people who are exposed to 17β-trenbolone by various ways are all influenced chronically and contin-
ually. Identification of such environmental risk factors will help us take early prevention measure to slow down
the onset of neurodegenerative disorders.

© 2014 Published by Elsevier Inc.
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Alzheimer's disease (AD) is a progressive, irreversible, and so far
incurable dementia. The genetic factors contributing to AD have been
studied extensively. Familial Alzheimer's disease (FAD) is primarily
caused by dominantly inherited mutations in the genes that encode
presenilin (PS-1 and PS-2) and amyloid precursor protein (APP)
(Hardy and Gwinn-Hardy, 1998). Other factors such as other genetic
factors, aging, and environmental factors may lead to a chronic imbal-
ance between β-amyloid peptide (Aβ) production and Aβ clearance in
the brain (Mattson, 2000). Considering neuropathology changes may
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occur many years earlier than the clinical dementia, we assumed that
some environmental factors which are continuously influencing the
human body may play roles in the neurodegeneration of AD.

The main hallmarks of AD in the brain are extracellular β-amyloid
peptide (Aβ) plaques (senile plaques) and intracellular neurofibrillary
tangles (NFTs). The senile plaques consist mainly of Aβ40 and Aβ42.
The initial Aβ deposition begins with Aβ42 because it is more prone to
aggregate than Aβ40 (Suzuki et al., 1994). The Aβ hypothesis is one of
the most prevailing hypotheses that have been proposed to explain
the pathogenesis of AD. Aβ is a peptide released by proteolysis of APP.
APP is a type I transmembrane protein and is ubiquitously expressed
in both neuronal and nonneuronal tissues. Three secretases are involved
in proteolysis of APP, α-secretase, β-secretase, and γ-secretase. Cleav-
age of APP by β- and γ-secretases will produce Aβ. On the contrast,
Aβ production will be avoided if APP is cleaved first by α-secretase in-
stead by β-secretase. APP is first cleaved in the extracellular domain
by β-secretase, and the remnant is cleaved at least twice within the
membrane byγ-secretase to produce the Aβ peptide and the intracellu-
lar domain. The produced Aβ variants contain 38–43 residues. The
major Aβ variant is 40 residues in length (Wolfe and Selkoe, 2010;
Wolfe, 2013). Although Aβ42 represents only 10% of total Aβ, it is the
major form found in the plaques of AD. The “amyloid hypothesis”
rogenic steroid as well as an environmental hormone, contributes to
.1016/j.taap.2014.11.007
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identifies Aβ deposition as the primary cause of AD (Hardy, 1997; Tanzi
and Bertram, 2005; Suzuki et al., 1994). The Aβ overproduction in the
brain is thought to be the primary pathogenic process which causes
various physiological events, such as oxidative damage, synaptic loss,
formation of tau pathology, microglial and astrocytic activation, and
progressive cognitive decline (Wojda and Kuznicki, 2013).

PS is a 50–55 kDa protein which contains nine transmembrane
domains (Laudon et al., 2005). PS and three other proteinswere discov-
ered as essential for γ-secretase activity (Wolfe, 2013). PS-1mRNAwas
expressed predominantly in the neuronal cells of the CNS, but only at
low level in glial cells (Suzuki et al., 1996). Mutations in PS-1 can lead
to alteration of APP processing and an increase and aggregation of
Aβ42 (Haass and Strooper, 1999; Doan et al., 1996; Akbari et al.,
2004). PS activity is important in learning, memory, and neuronal sur-
vival. PS-1 may control neurite outgrowth in neurons (Dowjat et al.,
1999). PS is essential for synaptic contact and in regulation neurotrans-
mitter release during synaptic transmission. Inactivation of presynaptic
PS will decrease long-term potentiation (LTP) and alter short-term
plasticity and synaptic facilitation (Georgakopoulos et al., 1999; Ho
and Shen, 2011). PS-1 is also involved in regulation of apoptosis
(Fluhrer et al., 2004).

Environmental hormones are also called endocrine disrupting com-
pounds which are released from domestic, agricultural, and industrial
sources and can interfere with the endocrine system of human beings
and animal kingdom (Zeng et al., 2011). Since endogenous hormones,
such as testosterone (T), dihydrotestosterone (DHT), and estradiol
(E2), exhibit protective actions in AD, the environmental hormones
which may mimic or antagonize the role of endogenous hormones
become our suspect for AD onset. Trenbolone acetate (TBA, 17β-
hydroxyestra-4,9,11-trien-3-one 17-acetate) is a synthetic anabolic
steroid that has been used extensively since the 1970s as a growth
promoter for livestock in the USA. TBA is administered to livestock
by subcutaneous slow-release implant (Yarrow et al., 2010). After
being released, TBA is rapidly hydrolyzed to 17β-trenbolone (17β-
hydroxyestra-4,9,11-trien-3-one) in blood stream of the animals. 17β-
trenbolone is a potent agonist of mammalian androgen receptor (AR)
with a binding affinity to the human AR comparable to DHT (Bauer
et al., 2000). Abundant studies have focused on the reproductive toxic-
ity of 17β-trenbolone (Hemmer et al., 2001;Wilson et al., 2002; Ankley
et al., 2003; Sone et al., 2005; Yarrow et al., 2010).

Besides, as an anabolic–androgenic steroid, trenbolone is used by a
large portion of recreational exercisers to increase muscle size and
strength (Perry et al., 2005; Parkinson and Evans, 2006; Ip et al., 2011).

Humans are at high risk of being exposed to 17β-trenbolone. There
are four possible ways through which humans are exposed to 17β-
trenbolone. The first one is 17β-trenbolone residue in meat. Although
17β-trenbolone is banned in livestock by some organizations, its
usage is still allowed in the USA and some merchants in other areas
also use 17β-trenbolone in pursuit of profit. The second way 17β-
trenbolone goes to human body is through the food chains. 17β-
trenbolone can be excreted by the animals and humans and it has
long half-life and stable properties in the environment (Schiffer et al.,
2001). It's worrying that 17β-trenbolone may be absorbed by aquatic
animals (Yarrow et al., 2010) as well as plants (Schiffer et al., 2001;
Blackwell et al., 2012) and can be incorporated into food chains.
Thirdly, 17β-trenbolone is regarded as a promising candidate in clin-
ical application. 17β-trenbolone can reduce incidence of androgenic
and/or estrogenic side effects associated with androgen administra-
tion (Yarrow et al., 2010). The last way by which 17β-trenbolone
goes into human body is direct injection. Since 17β-trenbolone can
promote muscle growth and reduce fat (Yarrow et al., 2010), it is
used in athletics and fit center, which is actually forbidden. The
surveys indicated that trenbolone is widely used as an anabolic–
androgenic steroid (AAS) mostly by recreational exercisers, in very
large doses for very long times (Perry et al., 2005; Parkinson and
Evans, 2006; Ip et al., 2011).
Please cite this article as: Ma, F., Liu, D., 17β-trenbolone, an anabolic–and
neurodegeneration, Toxicol. Appl. Pharmacol. (2014), http://dx.doi.org/10
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To our knowledge, no article related to the effects of environmental
hormone on AD onset has been reported in the current literature. Both
the in vivo and in vitro effects of 17β-trenbolone on AD-related param-
eters were assessed. The experiment systems we used did not carry
mutant genes that are correlated with AD.

Materials and methods

Animals and cell culture. Wistar rats were purchased from the Center
of Experimental Animal of Shandong University (Shandong, China). The
studies were conducted according to the regulations of the Center of
Experimental Animal of Shandong University. Male and female rats
were of 250± 10 g. Pregnant rats were shipped on the day after mating
and housed individually in clean plastic cages (20 cm× 25 cm× 47 cm).
The day after mating was designated as gestation day 1 (GD 1). Photo-
period was 14 h light and 10 h dark, lights on at 06:00 and off at
20:00. Rats were allowed free access to rodent chow and water. Tem-
perature was 20–22 °C and relative humidity was 45–55%.

Hippocampal neurons from newborn rats (postnatal day 0) were
cultured according to previously established procedures (Nunez,
2008). The culture medium was Neurobasal A (phenol red free,
Invitrogen, USA) containing 2 mM L-Glutamine (Sigma, USA) and 2%
B27 Supplement (Invitrogen, USA). All experiments were performed
on 9- to 12-day-old cultures.

Drugs and treatments. 17β-trenbolone was purchased from Dr.
Ehrenstorfer GmbH (Germany). T, DHT, flutamide, fulvestrant, and
trilostane were purchased from Sigma (USA). In animal experiments,
17β-trenbolone was dissolved in laboratory-grade corn oil (Sigma,
USA) with final concentration of 5 mg/ml, 1 mg/ml, and 0.2 mg/ml,
respectively. Rats were divided into several groups with each
group having six rats. Rats were injected with corn oil (control) or
17β-trenbolone solution (0.1 ml/100 g body weight) once intramus-
cularly on the right hind limbs. Pregnant rats were injected on GD
16. Male rats in groups Am, Bm, Cm, Dm, Em, and Fm were injected
with 5 mg/ml 17β-trenbolone solution and the treating time were
0.5 h, 2 h, 6 h, 12 h, 24 h, and 48 h, respectively. Male rats in groups
Gm and Hm were injected with 17β-trenbolone solution of 1 and
0.2 mg/ml, respectively. The treating time was 48 h. Male rats in
group Om was control. Accordingly, female rats in groups Af, Bf, Cf, Df,
Ef, and Ff were injected with 5 mg/ml 17β-trenbolone solution and
the treating times were 0.5 h, 2 h, 6 h, 12 h, 24 h, and 48 h, respectively.
Female rats in groups Gf and Hf were injected with 17β-trenbolone
solution of 1 and 0.2 mg/ml, respectively. The treating time was 48 h.
Female rats in group Om was control. Pregnant rats in group P were
treated with 5 mg/ml 17β-trenbolone solution for 48 h. Group Op was
control.

The largest dose used in the animal experiment was 5 mg/kg body
weight. According to the dose conversion formula below (Chen, 1993)
and the data in the previous paper presented, the equivalent injection
dose for human should be 0.85 mg/kg body weight which is much
lower than the dose injected by exercisers.

dhuman ¼ drat �
Rhuman

Rrat
�

ffiffiffiffiffiffiffiffiffiffi
Wrat

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Whuman

3
p

d, dose; R, body size coefficient; W, body weight.
drat=5mg/kg, Rhuman=0.11, Rrat=0.09,Wrat=0.25kg,Whuman=

94.4 kg (Perry et al., 2005).
The survey published in 2005 reported that 21.3% of the 207 respon-

dents injected trenbolone at the dose of 117.1 mg every other day (i.e.,
1.24 mg/kg body weight) with an average cycle of 6.8 weeks (Perry
et al., 2005). In 2006 it was reported that the trenbolone injection
dose by exercisers was 700 mg/week with a cycle of 11–20 weeks
(Parkinson and Evans, 2006). A most recent research indicated that
rogenic steroid as well as an environmental hormone, contributes to
.1016/j.taap.2014.11.007
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20.8% of the respondents used trenbolone, and trenbolone is one of the
three most commonly used AAS (Ip et al., 2011). In general, trenbolone
is used in much larger dose and much longer times in the human body.

The medium supplement B27 contains antioxidants which allow for
long term neuron survival and it was used before drug treatment. To
avoid interference of the antioxidants with the results, B27 supplement
was substituted with B27 Supplement Minus AO (Invitrogen, USA)
which is free of antioxidants and with which neurons will survive for
a few days. In cell experiments, drugs were dissolved in dimethyl sulf-
oxide (DMSO, Sigma, USA) and then diluted with culture medium.
Final 17β-trenbolone concentrations were 100 nM, 10 nM, and 1 nM.
Final concentrations of T, DHT, flutamide, fulvestrant, and trilostane
were 10 nM, 10 nM, 10 μM, 1 μM, and 10 μM, respectively. Final DMSO
concentration in the medium was no more than 0.1%. To investigate
the toxicity of 17β-trenbolone, it was added into the medium and
cells were incubated for 48 h. In order to clarify whether AR was in-
volved in the mechanism, flutamide (an AR antagonist) or DHT (an AR
agonist) was added, followed 1 h later by 100 nM 17β-trenbolone
(groups Flu + TB and DHT + TB) for 48 h. Fulvestrant was added,
followed 1 h later by 100 nM 17β-trenbolone for 48 h, to investigate
the involvement of estrogen receptor (ER, group Fulv + TB). There
was also group Tri + DHT + TB in which trilostane (a 3β-
hydroxysteroid dehydrogenase inhibitor) was added, followed 1 h
later by DHT and 100 nM 17β-trenbolone for 48 h. Neurons were also
treated with T 24 h before or after 100 nM 17β-trenbolone or they
were used together (groups T then TB, TB then T + TB, TB then T, and
T + TB). Control neurons were treated by replacing the medium with
medium containing 0.1% DMSO (vehicle).

Animal sample collection. After drug treatment, rats were anesthe-
tized by exposure to diethyl ether between the hours of 08:00 and
11:00. Cerebrospinal fluid (CSF) samples were taken using the cisternal
puncture technique. Blood collected was divided into two parts which
were put into tubeswith orwithout EDTAK2 anticoagulant, respectively.
The bloodwas centrifuged at 5000 g, at 4 °C for 10 min, and then plasma
or serum was collected. Serum is best for hormone determination and
plasma is best for other parameter determination. Ratswere euthanized
by decapitation and the brains of the adult rats and fetuses were obtain-
ed. Hippocampus of adult rats was isolated from the brain on ice. The
hippocampus and the brain without hippocampus were stored sepa-
rately. Biceps femoris muscles on the left leg were collected. We did
not choose the right side because 17β-trenbolone was injected on the
right side and results from samples on the left side would be more reli-
able. All samples were stored at −80 °C until analysis.

Drug concentration determination. This experiment aimed at investi-
gating whether 17β-trenbolone could penetrate through the blood
brain barrier (BBB) and placental barrier and the distribution of 17β-
trenbolone in the body. 17β-trenbolone concentrations in the samples
were determined by Trenbolone ELISA Kit (Cat. #DE-100170, Alpha
Diagnostic Intl. Inc., USA) according to the Instruction Manual (No. M-
DE-100170). Each test was performed in triplicate and the mean value
was obtained.

Serum hormone determination. To assess effect of 17β-trenbolone on
endocrine system, concentrations of serum hormones, such as T, E2,
and progesterone (PROG) were determined. The procedure was carried
out on the Access Immunoassay Systems (Beckman Coulter Access 2,
USA) according to the manual instruction of the three hormone testing
kits, i.e., Access Testosterone (33560, Beckman, USA), Access Estradiol
(33540, Beckman, USA), and Access Progesterone (33550, Beckman,
USA). Each test was performed in triplicate and the mean value was
obtained.

Cell viability assay. Cell viability was assayed by 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-dipenyl tetrazolium bromide (MTT) method. After
Please cite this article as: Ma, F., Liu, D., 17β-trenbolone, an anabolic–and
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drug treatment, 0.5mg/mlMTTwas added into the culture plate and in-
cubated for 2 h in the cell incubator. Then 100 μl of DMSO was added
after removal of supernatants. The formazan crystals formed inside
the viable cells would be solubilized. The absorbance at 540 nm was
read with microplate reader. Each test was performed in triplicate and
the mean value was obtained.

Cell morphology and nuclear staining assay. Nuclear of the cell was
stained by Hoechst 33258 (Sigma, USA). Culturemediumwas discarded
and cells were fixed with 4% paraformaldehyde in 0.1 M phosphate
buffer for 10 min. Cells were then rinsed with PBS for several times,
followed by staining with 5 μg/ml Hoechst 33258 in PBS for 10 min.
The stained cells were washed with PBS for several times.

Plasma membrane translocation of phosphatidylserine. Cells were
incubated with FITC-conjugated Annexin-V (Sigma, USA) for 10 min
at room temperature, followed by PI (propidium iodide, Sigma, USA)
staining.

Mitochondrial membrane potential (Δψm) measurement. Δψm was es-
timated using 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazol
carbocyanine iodide (JC-1). Normal mitochondria can concentrate JC-1
from aggregates, whereas de-energized mitochondria cannot. Fluores-
cence of JC-1 monomer is green, while fluorescence of JC-1 aggregate
is red. Cells were incubated with JC-1 (5 μM) for 20 min at 37 °C and
washed.

Cells were photographed by Olympus I × 71 Inverted Fluorescent
Microscope equipped with DP2-BSW camera software. Photographs
were processed using Adobe Photoshop CS2 (Adobe Systems, San Jose,
CA) to obtain the optimal display of the image.

Caspase-3 activity. Caspase-3 activity was measured using spectro-
photometer caspase-3 assay kit (Beyotime, China). Ac-DEVD-pNA can
be catalyzed by caspase-3 to pNA which has strong absorbance at
405 nm. Units of caspase-3 (nmol pNA) were determined from a stan-
dard curve, and the values were normalized to protein content. Each
test was performed in triplicate and the mean value was obtained.

Aβ42 assay. Aβ42 was measured using Human/Rat β Amyloid (42)
ELISA Kit (Wako, Japan). The samples were hippocampus, brain (with-
out hippocampus), CSF, plasma, and cell culture medium. Each test
was performed in triplicate and the mean value was obtained.

Protein precipitation and Western blot analysis. Cells lysates were
concentrated using trichloroacetic acid-sodium deoxycholate/
acetone (TCA-DOC/acetone) method according to previous method
(Cheng et al., 2009). The protein samples were separated on a SDS-
polyacrylamide gel and transferred to a polyvinylidene fluoride
(PVDF) membrane (Millipore, Germany). The membrane was blocked
and then incubated with primary antibody (Rb pAb to Presenilin 1,
dilution 1:300, Abcam, England) overnight at 4 °C. The membrane was
washed with PBST (phosphate-buffered saline containing 0.5% Tween-
20) and incubated with secondary HRP-conjugated antibody (Anti-
rabbit IgG, HRP-linked antibody, dilution 1:3000, Cell Signaling
Technology, Inc., USA) for 1 h at room temperature. Antibody binding
was detected using Enhanced Chemiluminescence Substrates forWest-
ern Blotting (Perkin Elmer, USA). After developing, the membrane was
stripped, followed by reprobing to detect β-actin to confirm equal load-
ing. Primary antibody was β-actin (13E5) Rabbit mAb (dilution 1:1000,
Cell Signaling Technology, Inc., USA). QuantiScan Software forWindows
(BIOSOFT, USA) was used to quantify the band intensity. Photographs
were processed using Adobe Photoshop CS2 (Adobe Systems, San Jose,
CA) to obtain the optimal display of the image. Each test was performed
in triplicate and the mean value was obtained.
rogenic steroid as well as an environmental hormone, contributes to
.1016/j.taap.2014.11.007
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Statistical analysis. All statistical analyses were performed using SPSS
13.0 for Windows (SPSS, Inc., USA). Results were expressed as mean ±
SEM. Student's t test and ANOVA were carried out. A level of p b 0.05
was required to obtain statistical significance.
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Results

17β-trenbolone distribution in rats

17β-trenbolone was observed to exist in brain, hippocampus,
CSF, plasma, and muscle of male and female rats, and in fetus brain
(Fig. 1). The ratio of 17β-trenbolone concentration in brain tissues
to that in plasma of male rats reached the highest at 12 h. The ratio
at 24 h was the highest for hippocampus and 12 h for the brain
(without hippocampus) in female rats (Fig. 2). The results indicated
that 17β-trenbolone could cross both the BBB and placental barrier
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Fig. 1. 17β-trenbolone concentration in rats. (A–D) 17β-trenbolone concentration in rat brain (
maternal plasma (D). (E) Comparison of 17β-trenbolone concentration in male and female ra
injection doses. a–h, different letters indicate significant difference (p b 0.05, n=6). (F) Compar
17β-trenbolone injection doses. a–f, different letters indicate significant difference (p b 0.05, n

Please cite this article as: Ma, F., Liu, D., 17β-trenbolone, an anabolic–and
neurodegeneration, Toxicol. Appl. Pharmacol. (2014), http://dx.doi.org/10
and could exert its effect on CNS of both adult and fetal rats. 17β-
trenbolone accumulated predominantly in brain, especially in the
hippocampus. 17β-trenbolone concentration in hippocampus was
higher than in the rest of the brain. 17β-trenbolone levels in tissues
and fluids exhibit a dose-dependent property. There were some
differences between male rats and female rats. We could see from
the figures that 17β-trenbolone concentrations in male rats were
commonly higher than in female rats.
F

Effect of 17β-trenbolone treatment on serum hormone levels of the rats

Administration of 17β-trenbolone caused serum hormone fluctua-
tion in both male and female rats (Fig. 3). In male rats, 48 h after 17β-
trenbolone treatment, serum T levels of the three dose groups were
slightly lower than that of the control group (p N 0.05) while in female
rats serum T levels of all the groupswere higher than that of the control
E
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O

without hippocampus), hippocampus, muscle (A), CSF (B), plasma (C), and fetus brain and
t brain (without hippocampus), hippocampus, and muscle with different 17β-trenbolone
ison of 17β-trenbolone concentration inmale and female rat CSF andplasmawith different
= 6).

rogenic steroid as well as an environmental hormone, contributes to
.1016/j.taap.2014.11.007
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group and the E2 level was elevated. Serum E2 level was not altered
while PROG level was very significantly higher after 17β-trenbolone
treatment of the pregnant rats.
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Effect of 17β-trenbolone treatment on Aβ42 level in vivo

Aβ42 levels in hippocampus, brain (without hippocampus), CSF,
and plasma were measured. Results were shown in Fig. 4. Since plas-
ma Aβ42 is derived from peripheral tissues so it may not reflect the
situations in brain well, the Aβ42 levels in plasma in our present
studies were examined as a parameter evaluating the toxicity of
17β-trenbolone. In male rats, 48 h after 17β-trenbolone injection,
Aβ42 levels were increased in a dose-dependent manner in the
brain (without hippocampus), hippocampus, and plasma. Aβ42
level was only significantly decreased in the female brain (without
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Fig. 3. Rat serum hormone levels. (A) T and E2 levels in rat serum changed over time. (B) Effe
injection dose on E2 level in female rat serum. (D) Effect of 17β-trenbolone treatment on E2 an

Please cite this article as: Ma, F., Liu, D., 17β-trenbolone, an anabolic–and
neurodegeneration, Toxicol. Appl. Pharmacol. (2014), http://dx.doi.org/10
hippocampus). Aβ42 level in the control embryo rat brain was very
low. 17β-trenbolone treatment of the mother rats could significantly
increase Aβ42 level in embryo rat brain.
17β-trenbolone induced cell viability reduction and apoptosis in primary
hippocampal neurons

As is shown in Fig. 5, cell viability was reduced and 17β-trenbolone
induced neuron morphological changes, and possible chromatin
condensation and nuclear fragmentation. It also induced translocation
of phosphatidylserine. Change of the fluorescence color from red to
green indicated the decrease of Δψm (Fig. 5C). These results indicated
apoptosis in the neurons.
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Increase of caspase-3 activity in vitro was mediated by both AR and ER

Caspase-3 activities increased after treatment with 17β-trenbolone
at concentrations of 1-100 nM (Fig. 6). Addition of T or DHT alone into
the cultures would not alter the caspase-3 activity. The inhibitors
(flutamide, fulvestrant, and trilostane) pre-treated groups have lower
caspase-3 activities compared with the 100 nM 17β-trenbolone treated
group, but still higher than control group. When DHT and 17β-
trenbolonewere added together to treat the neurons, caspase-3 activity
increased very significantly. Treatment with trilostane, the inhibitor of
3β-hydroxysteroid dehydrogenase, suggested that DHTmight be partly
metabolized by 3β-hydroxysteroid dehydrogenase to 5α-androstan-
3β, 17β-diol (3β-diol) (Pak et al., 2005; Lund et al., 2006; Handa et al.,
2008) in primary hippocampal neurons. The result suggested that AR
and ER were involved in the regulation of caspase-3 activity. T was
proved to be able to protect primary cultured rat hippocampal neurons.
Addition of T could decrease the caspase-3 activity compared with the
17β-trenbolone-only treated group.
ct of 17β-trenbolone injection dose on T level in rat serum. (C) Effect of 17β-trenbolone
d PROG levels in serum of pregnant rats. *p b 0.05, **p b 0.01 (n = 6).

rogenic steroid as well as an environmental hormone, contributes to
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Fig. 4. Effect of 17β-trenbolone treatment on Aβ42 level in rats. (A and B) Aβ42 level in male and female rat brain (without hippocampus), hippocampus, plasma, and CSF changed over
time. (C) Effect of 17β-trenbolone injection dose on Aβ42 level in rat brain (without hippocampus) and hippocampus. (D) Effect of 17β-trenbolone injection dose on Aβ42 level in rat CSF
and plasma. (E) Effect of 17β-trenbolone treatment on Aβ42 level in fetus brain. *p b 0.05, **p b 0.01 (n = 6).

6 F. Ma, D. Liu / Toxicology and Applied Pharmacology xxx (2014) xxx–xxx
U
N
C
O

R
R
E
CReduction of PS-1 protein expression level in vitrowasmediated by both AR

and ER

17β-trenbolone caused down-regulation of PS-1 protein levels in
the neurons (Fig. 7) and PS-1 protein expression was inhibited on a
same level by treatment with 17β-trenbolone from 1 nM to 100 nM.
Down-regulation of PS-1 protein expression was inhibited by antago-
nists (flutamide, fulvestrant, and trilostane) and promoted by agonist
(DHT), indicating both involvement of AR and ER, and DHT was partly
metabolized to 3β-diol. Addition of T could up-regulate PS-1 protein ex-
pression level. The result shows that T and 17β-trenbolone competed
for exerting their own effects on primary hippocampal neurons.

Increase of Aβ42 secretion by primary hippocampal neurons was mediated
by both AR and ER

Change of Aβ42 peptide level in the conditionedmediumwas nega-
tively related to PS-1 protein expression level and positively related to
caspase-3 activity (Fig. 6). The result shows that 17β-trenbolone treat-
ment promoted Aβ42 production and both AR and ER were involved
in the process. T and 17β-trenbolone resisted each other by playing
their neuroprotection and neurotoxic actions, respectively.

Interactions of T and 17β-trenbolone

The activities of PS-1 include increasing caspase-3 activity and Aβ42
secretion and down-regulating PS-1 protein expression. The different
combinations of T and 17β-trenbolone treated groups showed there
interactions. T could protect the neurons by resisting activities of PS-1.
When T was added prior to 17β-trenbolone (group T then TB), the PS-
Please cite this article as: Ma, F., Liu, D., 17β-trenbolone, an anabolic–and
neurodegeneration, Toxicol. Appl. Pharmacol. (2014), http://dx.doi.org/10
1 activities were reduced, especially the activity of promoting Aβ42
production. When 17β-trenbolone was added before T (group TB then
T), the PS-1 activities were also reduced. But when 17β-trenbolone
was added first and there was 17β-trenbolone all the time (group TB
then T + TB), the protecting role of T was limited.
Discussion

Our experiment indicated that 17β-trenbolone could cross the BBB.
17β-trenbolone is a small hydrophobic molecular sharing similar struc-
ture with T and DHT, so it's not difficult to understand why 17β-
trenbolone can cross the BBB. Hippocampus is known to be a target
for the modulator actions of androgens and estrogens (Hatanaka et al.,
2009). Maybe that's why brain tissue, especially the hippocampus, had
stronger affinity with 17β-trenbolone than muscle. 17β-trenbolone
was injected by athletes and bodybuilders once every two days. Our
results showed that 17β-trenbolone concentrations in rat brain and es-
pecially hippocampuswere still high even 48 h after 17β-trenbolone in-
jection at the lowest administration dose (0.2 mg/kg body weight). If
17β-trenbolone is injected again, its concentrations in the brain and
hippocampus will be increased. That means 17β-trenbolone will ac-
cumulate in the brain and hippocampus, which will lead to serious
consequences. Intense attention should be paid to the fact that 17β-
trenbolone was also detected in fetal rats' brain. 17β-trenbolone could
cross the placental barrier and exert effects on the fetus brain during
development. Aβ42 concentration in fetus brain was increased by
maternal exposure to 17β-trenbolone. The damage to neurons and
then to the CNS may occur since as early as fetus. The consequences
may be irreversible. The negative effects on developmental and growth
rogenic steroid as well as an environmental hormone, contributes to
.1016/j.taap.2014.11.007
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Fig. 5. 17β-trenbolone induced cell apoptosis and decrease of cell viability. (A) Lightmicroscopy of neuronmorphology (a and c) and H33258 (Hoechst 33258) staining of nucleus (b and
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toxicity in the offspring should be carried out in future studies.

The “amyloid hypothesis” identifies Aβ overproduction and deposi-
tion as the primary cause of AD (Tanzi and Bertram, 2005). Aβ42 levels
were altered in both in vivo and in vitro experiments by 17β-trenbolone
administration. Increase of Aβ42 concentration in the brain and hippo-
campuswill increase theAβ42 burden, lead to its aggregation and depo-
sition, and cause damages to neurons. Decreased Aβ42 levels in CSF
were regarded as predictor of AD (Blennow, 2005). In our experiment,
the CSF Aβ42 concentration did not change significantly. However, the
fact that neurons did produce more Aβ42 cannot be neglected. This
can only be explained as the overproduced Aβ42 did not diffuse into
CSF and the deposition of Aβ42 might have already occurred in the
brain. Moreover, the rats were treated with 17β-trenbolone for only 2
days. Long term exposure to 17β-trenbolone will have a chronic influ-
ence on Aβ42 level in the CSF. 17β-trenbolone caused increase of E2
which can reduce Aβ accumulation (Pike et al., 2009), maybe that's
why there were sex differences in Aβ42 accumulation.

17β-trenbolone induced apoptosis of the primary hippocampal
neurons. Neuronal cell apoptosis is the cardinal feature of both
acute and chronic neurodegenerative diseases, including AD
(Mattson, 2000). 17β-trenbolone caused Aβ42 overproduction in
the conditioned medium and increase of caspase-3 activity in the
Please cite this article as: Ma, F., Liu, D., 17β-trenbolone, an anabolic–and
neurodegeneration, Toxicol. Appl. Pharmacol. (2014), http://dx.doi.org/10
neuron lysates. PS-1 levels in the neurons changed reversely. Muta-
tions in PS-1 can lead to alteration of APP processing and increase
and aggregation of Aβ42 (Haass and De Strooper, 1999). We can in-
terpret PS-1 mutation as another way of losing normal PS-1. They
share certain identical consequences. Loss of PS-1 in the neurons
leads to weaken of its normal functions and increases the vulnerabil-
ity of neurons to apoptosis. As to how the PS-1 protein expression
was down-regulated, we hypothesized that the endoproteolysis of
PS-1 was promoted (Wolfe, 2013) and/or PS-1 was cleavage by acti-
vated caspase-3 (Fluhrer et al., 2004).

17β-trenbolone activities of decreasing PS-1 protein expression
level and increasing Aβ42 level and caspase-3 activity in primary
hippocampal neurons were all both AR and ER dependent. 17β-
trenbolone has an affinity to AR similar to DHT and three times the
affinity of T (Bauer et al., 2000; Yarrow et al., 2010). The competition
of 17β-trenbolone with T and DHT for the AR may have altered AR
activation and associated nuclear translocation and transcription. 17β-
trenbolone could induce androgen-dependent translocation of the AR
into the cell nucleus (Wilson et al., 2002) and cause up-regulation of
ARα and ARβ mRNAs expression (Sone et al., 2005). The ER was also
reported to be present in hippocampus (Meyer and Korz, 2013). The
activation of ER by 17β-trenbolone may be different from E2. 17β-
trenbolone is a substrate for neither 5α-reductase nor aromatase
rogenic steroid as well as an environmental hormone, contributes to
.1016/j.taap.2014.11.007
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Fig. 6. Effects of 17β-trenbolone treatment on caspase-3 activity and Aβ42 produc-
tion by primary hippocampal neurons. (A) Caspase-3 activity. **p b 0.01 vs. control
group, #p b 0.05, ##p b 0.01 vs. 100 nM 17β-trenbolone group (n = 6). (B) Aβ42
levels in culture medium of primary rat hippocampal neurons. *p b 0.05, **p b 0.01
vs. control group, #p b 0.05, ##p b 0.01 vs. 100 nM 17β-trenbolone group (n = 6).
TB = 17β-trenbolone, Flu = flutamide, Fulv = fulvestrant, Tri = trilostane.

Fig. 7. Effects of 17β-trenbolone treatment on PS-1 protein expression level in primary
hippocampal neurons. (A, C, and E) Representative Western blot shows analysis of PS-1
(upper panel) protein levels. β-actin (lower panel) was used as a negative control. (B, D,
and F) Relative levels of PS-1 protein were quantified by densitometry scanning of West-
ern blots. *p b 0.05 vs. control group (B), *p b 0.05, **p b 0.01 vs. 100 nM 17β-trenbolone
group, #p b 0.05, ##p b 0.01 vs. 10 nM DHT group (D), **p b 0.01 vs. 100 nM 17β-
trenbolone group, ##p b 0.01 vs. 10 nM T group (F). n = 3. TB = 17β-trenbolone, Flu =
flutamide, Fulv = fulvestrant, Tri = trilostane.

8 F. Ma, D. Liu / Toxicology and Applied Pharmacology xxx (2014) xxx–xxx
U
N
C
O
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estrogens. 17β-trenbolone activities through ER are direct rather than
indirect by converting to estrogens. 17β-trenbolone was reported to
have low-affinity with ER and could activate ER (Ankley et al., 2003).
Since DHT is an AR agonist and it can also be metabolized to 3β-diol
which activates ER, the 17β-trenbolone activities were promoted to a
very large extent.

T could attenuate Aβ toxicity in cultured hippocampal neurons with
a non-genomic mechanism (Pike, 2001). Our results indicated that T
could exert its neuron protection effects by resisting the cytotoxic
effects of 17β-trenbolone (Fig. 6, Fig. 7). However, when T and 17β-
trenbolone were used together to treat the cells, the toxic effects of
17β-trenbolone still appeared and protection function of T was reduced
whenever 17β-trenbolone was added.

In conclusion, current results indicated that 17β-trenbolone
played roles in neurodegeneration. We found that 17β-trenbolone
could influence the brain, especially the hippocampus, and promote
Aβ42 production in developmental brains if the mother has been ex-
posed to 17β-trenbolone. As an AAS, it is used widely in large doses
for long times by exercisers. As an environmental androgen, com-
mon people may also be exposed to 17β-trenbolone through various
ways. Since damages of neurons may occur much earlier than the
clinical symptoms of neurodegenerative disorders, exposure to
Please cite this article as: Ma, F., Liu, D., 17β-trenbolone, an anabolic–and
neurodegeneration, Toxicol. Appl. Pharmacol. (2014), http://dx.doi.org/10
17β-trenbolone should be regarded as a high risk environmental
factor in AD onset. Thus, the use of 17β-trenbolone should be
monitored.
rogenic steroid as well as an environmental hormone, contributes to
.1016/j.taap.2014.11.007
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